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The steady reflection of acoustic waves from a semi-infinite system of equally spaced barriers in a waveguide is investigated. 
Each barrier consists of a rigid diaphragm with an aperture, which is covered with a rigid moving valve. The valve is coupled 
elastically to the diaphragm and is capable of performing small oscillations. An exact analytical solution is obtained for the case 
of a waveguide of arbitrary cross-section, and results of a numerical investigation of the reflection coefficients of normal modes 
as a function of the frequency of the incident field are presented for the case of the plane problem. For comparison, analytical 
expressions and graphs of the frequency dependences for the reflection and transmission coefficients of normal modes through 
one and two similar barriers in the waveguide are given. © 2005 Elsevier Ltd. All rights reserved. 

The propagation of different kinds of modes in periodic one-, two- and three-dimensional structures, 
consisting of either point masses, connected by an elastic coupling, or of their electric or acoustic 
equivalents, has been considered previously in [1, 2]. 

As is well known, when investigating the propagation of sound in acoustic devices, (sound conductors 
and acoustic filters), made in the form of tubes (waveguides) with different couplings (cavities, expanders, 
dampers, etc.), these components are regarded as a non-uniformity with lumped parameters. The 
acoustic properties of the non-uniformities are characterized by the acoustic mass and the acoustic 
compliance [3]. The simplest mechanical model, which can be used to describe the propagation and 
scattering of sound by non-uniformities in such acoustic devices, is a piston, attached by an elastic spring. 
The oscillations of a single piston, completely covering the channel of a circular pipeline were considered 
in [4]. The scattering of waves by a piston, situated at the junction of two waveguides with different 
rigid and soft walls was investigated in [5]. 

Below we obtain exact solution of the problem of the reflection of normal modes of an acoustic 
waveguide from one or two obstacles, and also from a semi-infinite system of equally spaced obstacles 
in them. The obstacles are rigid screens with apertures, which are covered by moving pistons, supported 
by elastic springs (Fig. 1). The problem is a mathematical model for investigating the problem of the 
reflection of sound from acoustic filters with a large number of components. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider an acoustic waveguide, which is a cylindrical body filled with an ideal compressible medium 
and having an arbitrary cross-section G, and a boundary ~G. The geometry of the problem and the 
choice of the system of coordinates are shown in Fig. 1. The z axis is parallel to the generatrix of 
the cylindrical body. The acoustic pressure P(M, z) in the medium filling the waveguide satisfies the 
homogeneous Helmholtz equation 

tPrikl. Mat. Mekh. Vol. 69, No. 4, pp. 624-635, 2005. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
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A±+ P ( M , z ) + k 2 p ( M , z )  = O, k = to 
c 

The point M is situated in cross-section of the waveguide with coordinate z, A± is the two-dimensional 
Laplace operator in the cross-section of the waveguide, k is the wave number, c is the velocity of sound 
in the medium and 0~ is the angular frequency. The factor exp(-i~), which specifies the harmonic 
dependence of the wave processes on the time t, is omitted here and everywhere henceforth in the 
expressions for the pressure. 

The Neumann boundary condition 

~P w---(M,z) = 0 when M e  OG, -oo<z<oo 
o n - -  

where n is the normal to the side surface of the waveguide, is satisfied on the absolutely rigid wall of 
the waveguide. 

The steady scattering of normal modes by a semi-infinite system of transverse barriers in the waveguide 
is investigated. The barriers are situated in cross-sections of the waveguide z = jL; here and everywhere 
henceforth j -- 0, 1, 2 . . . . .  Each barrier consists of a rigid diaphragm, occupying the region G1. The 
aperture in the diaphragm is covered by a rigid moving valve of arbitrary shape, which occupies the 
region G2, where G1 t2 G2 = G and G 1 CI G 2 = O. The Neumann boundary condition 

~P 
.-~z(M, j L  + 0) = 0 when M e G l (1.1) 

is satisfied on the surface of the diaphragm. 
The valve of mass m is supported by an elastic spring of stiffness g and performs small oscillations 

about the equilibrium position. The equation of motion of the valve, taking into account the fact that 
the wave processes depend harmonically on time, can be written in the form 

(g  - m¢o 2) Uj = I I (P(M' jL - O) - P(M, jL + O))dS (1 .2)  

G2 

where .~ is the displacement of the valve, situated in the section z = jL,  from the equilibrium position. 
The kinematic condition of the contact between the valve and the medium, which consists of equating 

the displacement of the valve and the component of the displacement of the medium in the region of 
the valve, normal to it, has the form 

Uj = 1 OP(M, j L _ O )  = 0 when M e  G 2 (1.3) 
po2 t)z 
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The acoustic field scattered by the barriers must satisfy the limiting absorption principle, and in the 
neighbourhood of the points where the diaphragms are joined to the walls of the waveguide and the 
valves it must satisfy the Meixner conditions. 

We will choose as the source of the excitation of oscillations in the waveguide with the barriers a 
propagating normal mode Qo(M, z), incident on the barriers from the side of negative values of z. 

2. T H E  R E L A T I O N  B E T W E E N  T H E  V A L U E  O F  T H E  V A L V E  
D I S P L A C E M E N T  A N D  T H E  A M P L I T U D E S  O F  T H E  

N O R M A L  M O D E S  

In an acoustic waveguide with rigid walls without barriers there is a set of solutions of the homogeneous 
problem, called normal modes 

p~(M,z )  = A~p~(M)exp(+i7sz), s : O, 1, 2 . . . .  (2.1) 

The constantA has the dimension of pressure. The functions %(M), which describe the acoustic pressure 
distribution in a normal mode in a cross-section of the waveguide, are eigenfunctions, while gs = ~2 
are eigenvalues of the Neumann problem for the Laplace operator A± in the region G with boundary 
aG 

0% 
A±~ps(M) = g,q~,(M) when M~ G and -~-n(M) : 0 when M~ OG. 

The eigenvalues g2 -< 0 are numbered in decreasing order, and the eigenfunctions %(M) form an 
orthogonal basis in the space L z ( G  ). 

The propagation constant Ts of the normal modep~(M, z) is connected with the eigenvalue gs by the 
relation ~s = k 2 + gs. The frequencies &s, at which the propagation constant Ts vanishes, are called the 
onset frequencies of the normal modes. At frequencies higher than the onset frequencies when k > ~v,, 
the normal modep+(M, z) is a propagating mode and transfers oscillatory energy in the positive direction 
of the Oz axis, while the mode p-j(M, z) propagates in the negative direction. 

The normalization of the eigenfunctions %(M) for propagating modes is chosen in the form 

~kII~P~(M)dS = I (2 .2 )  

G 

where ~ is the waveguide cross-section area chosen so that all the propagating normal modesps + (M, z) 
transfer the same energy flux, averaged over a period, 

1 • a 2 

Ps (M, 2pc E = -+2pmlmll (M,z )dS  = 

G 

through the waveguide cross-section. Here we take the indices either plus or minus simultaneously, 
and the bar denotes complex conjugation. 

In particular, it follows from condition (2.2) that the eigenfunction %(M) = 1, which specifies a 
uniform pressure distribution in the waveguide cross-section, corresponds to the eigenvalue go = 0 in 
the region G. This wave is called a piston wave, and it is propagating at all excitation frequencies. 

For non-uniform waveguide modes the "normalization" condition is also chosen to be relation (2.2). 
Note that in problems where separation of the variables in the region G occurs, the number of an 

eigenfunction s must be understood as the multi-index s = (sb s2). 
We will characterize the displacement of the valve, situated in the cross-section z = jL,  by the 

dimensionless quantity uj, and connected with the displacement of this valve Uj by the relation 

Auj 
Uj - - io)pc (2.3) 
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Suppose one of the propagating normal modes with number s 

Qo(M, z) + = ps(M, z) (2.4) 

is incident on the barrier from the side of negative values of z. 
The total acoustic field in the waveguide to the left of the first barrier will be sought in the form of 

an expansion in normal modes (everywhere henceforth summation is carried out over n from zero to 
infinity) 

P(M, z) = Qo(M, z) + ZrnsPs(M, z) (2.5) 

The series in formula (2.5) describes the reflection of the field from the first barrier in the waveguide, 
situated in the cross-section z = 0, rs~ is the reflection coefficient of the modep+(M, z) ,  and rns is the 
transformation factor of the incident wave into the nth reflected normal mode (n ¢ s). 

We will show that the required quantities r,s in (2.5) are uniquely defined by the amplitude of the 
oscillation of the valve U0. To do this, making use of the characteristic function x(M) of the region G2 
(~(M) = 1 i fM ~ G 2 and ~(M) = 0 i fM ~ G1, we rewrite boundary conditions (1.1) and (1.3) in the 
form of the single condition 

1 2~ .P_ (M, _0) when M e  G ~(M)U o 
po~ o z  

(2.6) 

Condition (2.6), taking (2.5) into account, leads to the equation 

pcoZUo = i~lsP~(M, O) + Z(-i~[n)rnsP-n(M, O) (2.7) 

Multiplying (2.7) by the function cpl(M)l(~k) with n' = 0, 1, 2,... and integrating the equation obtained 
over the whole surface of the barrier G, taking the normalization (2.2) and the relation (2.3) into account, 
we obtain 

G G 2 

(2.8) 

where 5ns is the Kronecker delta and tin are the Fourier coefficients of the characteristic function x(M): 
~(M) = YxlnCpn(M). Note that "q0 = c2/~, where (Y2 is the area of the region G 2 which the valve occupies. 

The acoustic pressure Pj(M, z) in the section of the waveguide between neighbouring barriers, situated 
in the cross-sections z = jL and z = (J + 1)L, will be sought in the form of an expansion in series in 
standing waves 

P j ( M ,  Z) ~ (j) ( s ) . . .  ( j ) .  . ( j )  (a) . . . .  (j)-~ = 2.dan qn [lVl, Z - Z c  ) + O n  qn ( M , Z - z  c ) (2.9) 

where 

q (nS)(M, z) = (p+ (M, z) + p-n(M, z))/2 = Agn(M)cos(~lnz ) 

q(na)(M, Z) " + = ~(pn(M, z ) -  pn(M, z))/2 = Acpn(M)sin('[nz ) 

where a(n j) and b(n j) are the amplitudes of the standing waves, q(S)(M, z) is the standing wave in the cavity, 

symmetric with respect to the cross-section z = z~ j) = (j + 1 ) L  andq{~a)(M,z)and is the standing w a v e  

antisymmetric with respect to this cross-section. 
From the boundary condition (2.6) for each valve, taking (2.9) into account, we obtain 

(2.10) 
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As when deriving formula (2.8), from Eqs (2.10) we obtain the following system of linear algebraic 
equations 

a(,,Y) sin(TnL/2) + b(nJ) cos(TnL/2) = il]nU j 

-a(n y) sin ( TnLI2 ) + b (nJ) c°s( Tn LI2 ) = i l lnU j + 1 

from which we find the quantities a~ ) and b(n j). If sin(TnL) * O, we obtain 

()) i l]n 

a n = 2s in (TnL /2 ) (u j -u j+ l )  (2.11) 

b (j) _ il]~ 
n 2cos(T,,Li2)(uj + uy+ l) (2.12) 

The case when the displacements of the values are equal uj = uj+l corresponds to the case 
sin(TnL/2) = 0, in which case a~ ') = 0, and quantity b(n :) is given by formula (2.12). When cos(ynL/2) = 0 
we have uj = -Uj+l,  and then b(n j) = 0, while the quantity a~ ) is found from (2.11). 

3. THE SCATTERING OF N O R M A L  MODES BY A S E M I - I N F I N I T E  
SYSTEM OF B A R R I E R S  IN A W A V E G U I D E  

For a final solution of the problem of the scattering of normal modes by barriers in a waveguide, we 
must determine the amplitudes of the displacements of the valves. The required amplitudes are obtained 
using their equations of motion (1.2), whence we obtain an infinite system of linear algebraic equations 
for these amplitudes. 

The equation of motion of the valve in the cross-section z = 0 has the form 

(g-mO~2)Vo = I I (P+s(M'O)+ Z rnsp-n(M'O))dS-  

G2 

- I I "  ,o, . , . . .  s t ,~an qn tM, L I 2 ) -  
G2 

(3.1) 

Integrating on the right-hand side of Eq. (3.1) and taking into account relation (2.3) and formulae 
(2.11) and (2.12), we have 

uo(Z. ÷ z z . ÷  ÷ ...-.":÷ (3.2) 

Z ,  i t°m° 1 -  , Z n = to o = , m o 
= -  pc  ( "~n' a2 

÷ 
Z n = iZnctg(TnL/2 ), Z- n = - iZntg(TnL/2 ) 

Here Z ,  is the impedance of the valve in a vacuum, normalized, like all the impedances henceforth, 
to the impedance pc, c00 is the natural frequency of the valve in a vacuum, m0 is the surface density of 
the valve, Z,, is the normalized impedance of the interaction of the valve, situated in the cross-section 
z = O, and the nth normal mode, and Z~ is the normalized impedance of the cavity with rigid walls and 
two moving valves for the symmetric nth standing wave (superscript plus) and the for the antisymmetric 
nth standing wave (superscript minus). 

The equation of motion of the valve, situated in the cross-section with coordinate z = (j + 1)L, has 
the form 

(g - moo 2) Uy + l = I I (Pj(M, ( j  + 1)L) - Py + l(M, ( j  + 1)L))dS (3.3) 
G2 
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Using representation (2.10), relation (2.3) and formulae (2.11) and (2.12), we can rewrite the equation 
of motion of the valve (3.3) in the form 

u j . , ( Z , + Z ( Z + + Z - ) )  = ~2(u * uj+,)Z(Z+~-Zn~) (3.4) 

For this second-order linear difference equation with constant coefficients it is necessary to solve a 
boundary-value problem with condition (3.3) forj  = 0 and, taking into account the limiting absorption 
principle, the condition than uj decreases asj  ~ ~ .  

We will seek the sequence of quantities uj in the form 

uj = exp(/jF) (3.5) 

where F is the propagation constant of the waves in the waveguide with a periodic system of obstacles. 
To determine the propagation constant F from Eq. (3.4), taking (3.5) into account, we have the 

dispersion equation 

cosF = W; W = (Z .  + ]F,(Z+. * Z-,))(y~(Z+, + Z~)) -1 (3.6) 

Note that W(0)) is a real quantity for any valve of the frequency co. 
Equation (3.6) has real roots when ] W(0~) [ < 1, which defines frequency domains - passbands of the 

periodic system of obstacles in the waveguide, when similar obstacles are placed at equal distance L. 
Under these conditions, Eq. (3.6) has two simple real roots Fa, 2 = _arccos W in the interval (-re, r0, 
to which three correspond two linearly independent bounded solutions u~. 1) = exp(/jF1) and u~. 2) = 
exp(ijF2). In a waveguide with a semi-infinite set of obstacles, two harmonic processes correspond to 
them, which we will call travelling waves. The solution u} 1) corresponds to a wave propagating in the 
positive direction of the Oz axis, while u~? ) corresponds to a wave propagating in the negative direction. 
If [W(o)] = 1, Eq. (3.6) has multiple roots. In this case, when W = 1, one solution of the difference 
equation has the form u} 1) = u0, and the valves oscillate in phase, and when W = -1, the relations 
u} 1) = (-1)Ju0 are satisfied and neighbouring valves oscillate in antiphase. The other linearly independent 
solution has the form U(2) = ju~ 1) and is not bounded. 

J 

When ] W(o) I > 1 in a waveguide with a periodic system of obstacles there are no propagating waves, 
since the roots of Eq. (3.6) are pure imaginary, corresponding to exponentially increasing or exponentially 
decreasing non-uniform waves. 

After finding the value of the propagation constant F, the value of the displacement amplitude u0 is 
found from Eq. (3.2), taking relation (3.5) into account, 

u0 = + : O z . + '  + , • l + -z . ))  (3.7) 

using Euler's formula for the exponential function with imaginary exponent and Eq. (3.6), we can 
express the quantity exp(iF) in terms of the impedances of the system and we can write expression (3.7) 
in the form 

+ 1 / 2  ~ _ 1 / 2  

uo=Zn,lZ;  z = z . + ~ z n + 2 ,  z = ( z . / z + ~ z , )  (Z . lZ+~,_z , )  - z . I 2  (3.8) 

where Z is the impedance of the semi-infinite system of barriers in the waveguide, ~Z~ is the impedance 
of the left channel of the waveguide z < 0, Z is the impedance of the right channel of the semi-infinite 
system of barriers when z > 0. 

The coefficient ms, according to Eq. (2.8), taking expression (3.8) into account, can be calculated from 
the formula 

r,s = 5,,-2Z~-~,ZJZ (3.9) 

Note that the choice of the normalization of the normal modes in relation (2.1) has enabled us to 
express the principle of duality in the simplest form - here there is a symmetry of the scattering matrix 
rns = rsn. 
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4. T H E  R E F L E C T I O N  OF A WAVE F R O M  O N E AND TW O  B A R R I E R S  

To analyse the results obtained above, we will obtain solutions of problems of the reflection of a wave 
of the type (2.4) from one and two barriers in a waveguide. 

Suppose two similar barriers with valves are situated in the cross-section z = 0 and z = L. We will 
seek the acoustic pressures in the left part of the waveguide, where --~ < z < 0, in the form of the 
expansion 

P(M, z) = Qo(M,  z) + Zr~2s)p2(M, Z) 

and in the right part of the waveguide where z > L in the form 

(2) + 
P(M, Z) = ~ t . s  p . ( M ,  z - L )  

where r(2)s~ and t (2)ss are the reflection and transmission coefficients, and r(] ) and t (2)ns , when n ¢ s, are 
transformation factors of the incident wave into the nth reflected and transmitted normal mode. For 
acoustic pressure between the barriers, where 0 < z < L, we will have representation (2.9). 

As when obtaining formula (2.8) we have t~ = rlnUa, where ua is the displacement of the valve situated 
in the cross-section z = L. 

The final expressions for the reflection and transmission coefficients and for the transformation factor 
in the case of two barriers have the form 

.(2) 2 Z,~ZnZ~/Z (2) rns(2) = ~ n s -  2 Z.jZnZ~/Z(2), tns = 

_ - 1  - 1  

Z (2) : Z ,  + Z Z n  + 2 .  2 = ( ( Z ,  + Z Z n )  -1 + 2 ( ~ ( Z ~  + + Z . ) )  ) 
(4.1) 

where Z (2) is the impedance of the system of two valves and the cavity between them in the waveguide, 
and ~ is the impedance of the system consisting of the cavity (0 < z < L), which is to the right of the 
first barrier (z = 0), the second barrier (z = L) and the semi-infinite channel of waveguide (z > L), 
situated to the right of the second barrier. 

If there is only one barrier in the waveguide in the cross-section z = 0, the expressions for the reflection 
coefficient from one barrier (r~)) the transmission coefficient (t~)) and the transformation factors 
r 1) and t 0 h  are obtained from formulae (4.1), by taking the limit as L ~ 0 and halving the mass of ns ns ] 

the valve. We will have 

__(1) .(1) 2 Zd~nZ~/z(l), Z(1) Z ,  + 2 ~ . Z  n (1) 8.~ 2 ZdrZ~Z~/L , ~,s rns = - = = (4.2) 

where Z O) is the impedance of one valve in the waveguide. 
The first expression of (4.2) can also be obtained if we assume, in the first formula of (4.1), that the 

impedances of the waveguide valves to the right and to the left of the barrier are similar and ~ = ~_,Z n. 
The displacement of the valve u 0 is then found from the first formula of (3.8), in which we must replace 
the impedance Z by Z (1). 

Note that, if we assume Z (1) = Z .  + ]~Z~ in the first formula of (4.2), we obtain an expression for 
the reflection coefficients of one barrier in the waveguide, on the right of which there is a vacuum in 
the waveguide. 

5. D I S C U S S I O N  OF T H E  R E S U L T S  

We will investigate how the reflection coefficients of a piston-type normal mode (s = 0) depend on the 
frequency of the incident field ~. 

In the case of a single barrier, it follows from the first of (4.2) that 

r~) ) = (Z ,  + 2(Z 1 + Z 2 + . . . ) ) (Z ,  + 2(Z o + Z 1 + Z 2 + ...))-1 (5.1) 

As the frequency of the incident wave co approaches the onset frequency 60 n of the nth waveguide 
mode (n > 0) we have 7n --> 0 and Z n ---> oo. By taking the limit in formula (5.1) we obtain that 
lim r(o 1) = 1 as ~0 --> 6%. 
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The frequency of total transmission of the incident zeroth normal mode, on which r(0~ ) = 0, while 
t(010 ) = 1, according to expression (5.1) is found from the equation Z ,  + 2(Z 1 + Z 2 + ...) = 0. It always 
has a unique solution. First, the required frequency is less than the onset frequency of the first normal 
mode (01, since under these conditions the impedances occurring in the equation are pure imaginary 
quantities. Second, it is less than the natural frequency of the valve COo, since here, as the frequency 
increases from zero to the natural frequency of the valve, the value of Im(-Z , )  increases monotonically 
form --oo to zero, while the quantity Im(Z1 + Z2 + ...) decreases monotonically from zero to a certain 
finite value. 

At the frequency of total transmission of the incident fieldp~(M, z) we have the relation ~2[u0] = 
c~ ]u ], where u 0 is the displacement of the valve and u is the displacement of the fluid in the incident 
wave in the cross-section z = 0. 

We will now consider the case when the valve completely covers the waveguide cross-section, i.e. the 
region G 2 coincides with the region G. The scattering by the valve of only the normal mode p~(M, z) 
is of interest, the other normal modes being reflected from the valve as from an absolutely rigid wall, 
since the average pressure of these modes on the valve is equal to zero and the piston is fixed. In the 
case when a normal modep~(M, z) is incident on the barrier, only the mode r(1)~Po(M, z) is reflected. 
Formula (5.10) for the reflection coefficient can be rewritten in the form 

r~) ) = 1 - 2Zo/Z (2) (5.2) 

whereas r(n~ ) = 0 when n > 0. In this case the equality/01) = 0 is satisfied at the natural frequency of 
the valve 030. 

The reflection coefficient of a piston wave in the case when two similar valves completely block the 
waveguide channel, by relations (4.1) are given by the formula 

= ~. "Z + + _ +  -1 -1 r~ ) 1 - 2ZolZ(2); Z (2) Z ,  + Z 0 + Z,  Z = ( ( Z ,  + Zn) -1 + [ n Zn) ) (5.3) 

(z) = 0 w h e n n  = 1, 2, The transformation factors %0 . . . .  
If follows from formula (5.3) that at the natural frequencies of a cavity with rigid walls and length 

L, defined by the formula 03;, = Tcnc/L, one of the impedances Z~- or Zff is equal to zero, while the other 
is equal to infinity. At these frequencies the expression of the reflection coefficient takes the form 

r~ ) = Z , I ( Z ,  + Zo) (5.4) 

A comparison of expressions (5.2) and (5.4) shows that at frequencies 03~, the reflection coefficients 
of two valves with impedances Z ,  and from a single valve with an impedance 2Z,  are the same. 

Another series of frequencies co,~, at which the moduli of the reflection coefficients r(010 ) and r(020 ) are 
identical, is found from the equations 

+ 
Z , / 2 + Z  o = 0 or Z , / 2 + Z o  = 0 (5.5) 

Note that r ~  ) = 0 at the natural frequency of the valve in a vacuum (03 = 030) and at frequencies COn, 
which are found from the equation 

Z , + Z  o + Z  o = 0 (5.6) 

At sufficiently high frequencies, Eqs (5.5) and (5.6) can replaced by the following approximate 
equations respectively: cth(kL) = mk/(4p) and cth(kL) = rnk/(2p). A n  analysis of the roots of the 
approximate equations shows that they satisfy the inequalities 03;' < 03* < 03". 

We will begin an analysis of the frequency dependence of the reflection coefficient of a semi-infinite 
system of barriers with the case when the valves completely block the waveguide channel. We obtain 
the following expression for the reflection coefficient of a piston wave 

+ 1/2 Zo) 1/2 roo = 1 -2Zo /Z ;  Z = Z , + Z + 7 - , ,  Z = ( Z , / 2 + Z  o) ( Z , / 2 +  - Z , / 2  (5.7) 

where Z is the impedance of a semi-infinite system of barriers, each of which completely blocks the 
waveguide channel. 
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It  follows from formula (5.7) that, at a frequency of the incident wave co = COo, equal to the natural 
frequency of the valve, the relations Z = Z0, Z = 2Z 0 are satisfied and the reflection coefficient r00 is 
equal to zero. 

When the frequency of the incident field approaches the natural frequencies of the cavity, formed 
by neighbouring barriers in the waveguide, r00 ~ 1. 

If  the valves completely block the waveguide cross-section, the expression for W from the second 
formula of (3.6) takes the form 

+ Zo)/(Zo Zo) W = (Z ,+ Zo+  

The boundaries of the passband for a semi-infinite system of valves, which completely block the 
waveguide channel, are found from the equation W = _+ 1. These equations, in turn, lead to equations 
of the form (5.5), whence it follows that the boundaries of the passband, at which r00 = 1, correspond 
to the frequencies o~ and co',',. 

Numerical calculations of the squares of the moduli of the reflection coefficients as a function of the 
dimensionless frequency f~ = kH were carried out for the case of one, two and a semi-infinite set of 
barriers in a plane waveguide 0 < x < H, --oo < z < oo. Assuming that the wave processes are independent 
of  the variable y, we have: the region G is a rectangle of  height H and unit width. A rectangular valve 
in that case occupies a rectangular part,  such that h I _< x _< h 2. The eigenfunctions %(x) of  the operator  
A± = d2/dx 2, normalized in accordance with formula (2.2), which satisfy the boundary conditions 
q0"(0) = q0~,(H) = 0, are given by the formula 

~.(x) = ~ c o s ( n n x / H ) ,  n = 0 ,1 ,2  . . . .  ; e o = 2, el = e2 = E3 . . . . .  1 

while the eigenvalues 

~n = -(~n/H) 2 

For the Fourier coefficients of the characteristic function of the section [hi, h2] according to Eq. (2.7) 
we have 

h 2 - h  z ~ / 2 ( .  ~ n h  2 . ~nhj'~ 
~1o = H ' rl" = ~n~.Sm--H-- - s m - - - ~ )  for n = 1, 2 . . . .  

For the calculations we assumed that the dimensionless natural frequency of the valve in a vacuum 
f~o = o~oH/c = 2.5 and the ratio m/(gH ) = 0.5. 

In Fig. 2 we show graphs of the square of  the modulus of the reflection coefficients r(01) for one valve 
when it blocks different parts of the waveguide cross-section. Here  the following dimensionless 
frequencies should be noted: the natural frequency of the valve f20 and the onset frequencies of  the 
normal  modes f~n = nn. Even values of  n correspond to normal modes that are symmetric with respect 
to the waveguide axis, while odd values of n correspond to normal modes  that are antisymmetric with 
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respect to the waveguide axis. The dashed curves correspond to the case when the valve completely 
blocks the waveguide cross-section, the dash-dot curve corresponds to the case when the valve is situated 
at the centre of the waveguide and its width is half the width of the waveguide, while the continuous 
curve is for the case when the valve is in tight contact with the waveguide wall. When the valve surface 
is reduced and the surface of the rigid diaphragm is correspondingly increased, the modulus of the 
reflection coefficient increases, with the exception of a small frequency band in the region of ~0- In a 
waveguide with a symmetrically placed valve in the diaphragm, only symmetrical normal modes are 
excited. 

In Fig. 3 we show graphs of the frequency dependence of the square of the modulus of the reflection 
coefficient r(02) (the dash-dot curve) and r00 (the continuous curve) for two and a semi-infinite system 
of similar barriers in a waveguide, respectively. We also show the frequency dependence of the square 
of the modulus of the reflection coefficient r60 of a single valve, but with twice the mass (the dashed 
curve), where rio = Z,/(Z, + Zo). In all these cases the valves completely block waveguide channel, 
and a distance between neighbouring barriers is chosen so that L/H = 1.5. Along the abscissa axis we 
have plotted the dimensionless frequencies ~ = m',,H/c and f~" = o~H/c. At these frequencies the 
values of the square of the moduli of r(02) and rb0 are identical, and these frequencies are simultaneously 
the limits of the passband, where Ir00i < 1, and the stop band, where [r00i = 1. We have denoted 
the dimensionless frequencies at which r(020 ) = 0 by f2* = o~*H/c. 

Note that at sufficiently high frequencies the maxima of the modulus of the reflection coefficient for 
two barriers lie in the stop bands for the case of a semi-infinite set of barriers, while the minima lie in 
the passbands. 
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In Fig. 4 we show graphs of the square of the modulus of r00 and r20 for the case when the valves, 
occupying half the width of the waveguide, are situated in the middle of the barriers. To determine the 
frequencies in the stop band for a given reflection we note that, at these frequencies, it follows from 
the law of conservation of energy that the sum of the square of the modulus of the reflection coefficient 
of a travelling normal mode and of the squares of the moduli of the transformation factors of this mode 
in all the propagating normal modes is equal to unity. In the stop band, at frequencies less than the 
onset frequency of the first normal mode, the identity ]r00 ] = 1 is satisfied. At frequencies greater than 
the onset frequency of the first normal mode, but less than the onset frequency of the second normal 
mode, in the stop band the identity Ir0012 + I r201 a = 1 is satisfied. The dashed curve in Fig. 4 shows 
the total reflected energy W, = ] r0012 + [r2012 as a function of f~ in the passbands. 
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